Proprotein convertase subtilisin kexin type 9 promotes intestinal overproduction of triglyceride-rich apolipoprotein B lipoproteins through both low-density lipoprotein receptor-dependent and -independent mechanisms.

نویسندگان

  • Shirya Rashid
  • Hagai Tavori
  • Patrick E Brown
  • MacRae F Linton
  • Jane He
  • Ilaria Giunzioni
  • Sergio Fazio
چکیده

BACKGROUND Proprotein convertase subtilisin kexin type 9 (PCSK9) promotes the degradation of the low-density lipoprotein (LDL) receptor (LDLR), and its deficiency in humans results in low plasma LDL cholesterol and protection against coronary heart disease. Recent evidence indicates that PCSK9 also modulates the metabolism of triglyceride-rich apolipoprotein B (apoB) lipoproteins, another important coronary heart disease risk factor. Here, we studied the effects of physiological levels of PCSK9 on intestinal triglyceride-rich apoB lipoprotein production and elucidated for the first time the cellular and molecular mechanisms involved. METHODS AND RESULTS Treatment of human enterocytes (CaCo-2 cells) with recombinant human PCSK9 (10 μg/mL for 24 hours) increased cellular and secreted apoB48 and apoB100 by 40% to 55% each (P<0.01 versus untreated cells), whereas short-term deletion of PCSK9 expression reversed this effect. PCSK9 stimulation of apoB was due to a 1.5-fold increase in apoB mRNA (P<0.01) and to enhanced apoB protein stability through both LDLR-dependent and LDLR-independent mechanisms. PCSK9 decreased LDLR protein (P<0.01) and increased cellular apoB stability via activation of microsomal triglyceride transfer protein. PCSK9 also increased levels of the lipid-generating enzymes FAS, SCD, and DGAT2 (P<0.05). In mice, human PCSK9 at physiological levels increased intestinal microsomal triglyceride transfer protein levels and activity regardless of LDLR expression. CONCLUSIONS PCSK9 markedly increases intestinal triglyceride-rich apoB production through mechanisms mediated in part by transcriptional effects on apoB, microsomal triglyceride transfer protein, and lipogenic genes and in part by posttranscriptional effects on the LDLR and microsomal triglyceride transfer protein. These findings indicate that targeted PCSK9-based therapies may also be effective in the management of postprandial hypertriglyceridemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipoprotein(a) catabolism is regulated by proprotein convertase subtilisin/kexin type 9 through the low density lipoprotein receptor.

Elevated levels of lipoprotein(a) (Lp(a)) have been identified as an independent risk factor for coronary heart disease. Plasma Lp(a) levels are reduced by monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9). However, the mechanism of Lp(a) catabolism in vivo and the role of PCSK9 in this process are unknown. We report that Lp(a) internalization by hepatic HepG...

متن کامل

Hypercholesterolemia, low density lipoprotein receptor and proprotein convertase subtilisin/kexin-type 9

Atherosclerotic cardiovascular disease is the main cause of mortality and morbidity in the world. Plasma levels of low density lipoprotein cholesterol (LDL-C) are positively correlated with the risk of atherosclerosis. High plasma LDL concentrations in patients with hypercholesterolemia lead to build-up of LDL in the inner walls of the arteries, which becomes oxidized and promotes the formation...

متن کامل

Proprotein convertase subtilisin/kexin type 9 interacts with apolipoprotein B and prevents its intracellular degradation, irrespective of the low-density lipoprotein receptor.

OBJECTIVE proprotein convertase subtilisin/kexin type 9 (PCSK9) negatively regulates the low-density lipoprotein (LDL) receptor (LDLR) in hepatocytes and therefore plays an important role in controlling circulating levels of LDL-cholesterol. To date, the relationship between PCSK9 and metabolism of apolipoprotein B (apoB), the structural protein of LDL, has been controversial and remains to be ...

متن کامل

Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue.

OBJECTIVE Proprotein convertase subtilisin/kexin 9 (PCSK9) promotes the degradation of the low-density lipoprotein receptor (LDLR), and its gene is the third locus implicated in familial hypercholesterolemia. Herein, we investigated the role of PCSK9 in adipose tissue metabolism. METHODS AND RESULTS At 6 months of age, Pcsk9(-/-) mice accumulated ≈80% more visceral adipose tissue than wild-ty...

متن کامل

Apolipoprotein B100 metabolism in autosomal-dominant hypercholesterolemia related to mutations in PCSK9.

OBJECTIVE We have reported further heterogeneity in familial autosomal-dominant hypercholesterolemia (FH) related to mutation in proprotein convertase subtilisin/kexin type 9 (PCSK9) gene previously named neural apoptosis regulated convertase 1 (Narc-1). Our aim was to define the metabolic bases of this new form of hypercholesterolemia. METHODS AND RESULTS In vivo kinetics of apolipoprotein B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 130 5  شماره 

صفحات  -

تاریخ انتشار 2014